
Verification of FlexRay using directed and coverage-based
testing – A comparison

Markus Baumeister, Philips Research Laboratories Aachen, Germany
Jörn Ungermann, Philips Research Laboratories Aachen, Germany

Abstract

Verification of system behavior by testing is one component to prevent systematic errors and thus improve the
system reliability. FlexRay, a fault-tolerant, distributed communication protocol for automotive use in safety-
relevant applications, constitutes such a reliable albeit complex system. We describe a coverage-based constrained-
random testing approach employing a fully functional reference model, its use to test a FlexRay controller, and
compare it with an independently developed directed test approach. Using the errors uniquely found by each
approach, we show that the random approach outperforms the directed one resulting in less undetected errors for
the cost of a higher error handling effort.

1 Introduction
Although in principle design and implementation errors
are to be avoided a priori and not to be found a poste-
riori, reality shows that errors occur and need to be de-
tected to achieve high quality products. Two competing
simulation-based test approaches are employed for such
error detection: Directed Testing, where test designers
specify concrete test cases, and coverage-based random
testing, where test designers rely on randomly gener-
ated input and have to determine whether the random
input did test everything of importance.

For the FlexRay communication protocol the lucky
situation arose that both approaches have been used for
testing. A directed test approach is used by the FlexRay
protocol conformance test [5] whereas a coverage-
based random test approach was employed internally by
Philips/NXP. Significant effort was spent on each of the
approaches, so this gives the chance to compare "real
life" examples of the two approaches.

In the following we will shortly describe both ap-
proaches in general and then in the context of the
FlexRay protocol verification task. The subsequent
comparison is based on the number of errors found by
only one of the approaches clustered according to criti-
cality and suspected reason for non-discovery. We will
conclude with some observations on whether one of the
approaches should be preferred over the other.

1.1 Verification methods

The verification of an implementation under test (IUT)
shall assert that it fulfills its requirements or specifica-

tion. There are at least two systematic approaches to
achieve this. One is called directed-testing, the other
coverage-based random verification.

For directed testing, a set of dedicated test-cases is
defined, generally one test-case per given feature or
functional requirement. Each test-case describes the
configuration of the IUT, a set of stimuli, and a set of
expected responses. Generally it only checks the be-
havior related to the feature under test. A test-case may
vary its stimuli at the discretion of the test designer.

Coverage-based verification also starts with the fea-
tures. For each feature a set of coverage metrics is
defined, i.e. the verification test bench gets the means
to determine that a certain aspect of a feature has been
used by the IUT. These coverage metrics are combined
with checkers that detect wrong behavior of the IUT.
Checkers may consist of a reference model that is fed
the same stimuli while comparing the outputs, or a set
of rules integrated into the verification test bench. The
IUT is then stimulated by random inputs until the cov-
erage metrics indicate complete coverage [9]. Random
stimuli are generally constrained to generate more ’sen-
sible’ input than generated by a purely random process.

The general advantage of directed testing is that one
gets results early by writing test-cases for already com-
pleted features of the IUT. However, additional runs
of the test bench do not deliver further results. Us-
ing coverage-based random testing, each run adds new
stimuli to the IUT, potentially driving it into conditions
not foreseen by both the designer and the verification
engineer. In this way, the verification can meaningfully
continue also after the coverage has been completed and
further errors in the design can be discovered.



1.2 FlexRay and test environments
The FlexRay consortium was founded in 2000 by
BMW, DaimlerChrysler, Philips/NXP and Freescale
(formerly Motorola) to establish a new standard for “a
dependable automotive network” [3]. Basic charac-
teristics of the FlexRay protocol are synchronous and
asynchronous frame transfer, guaranteed frame latency
and jitter during synchronous transfer, prioritization
of frames during asynchronous transfer, multi-master
clock synchronization, error detection and signaling,
and scalable fault tolerance [4].

The FlexRay Protocol Specification (PS) completely
defines the expected behavior of the protocol using SDL
diagrams with accompanying explaining descriptions.
Nine different process types are defined, of which sev-
eral are instantiated twice for dual-channel systems,
totaling 15 concurrently running, inter-communicating
processes [4]. Furthermore several mechanisms of the
FlexRay protocol – like the startup and the distributed
clock synchronization – require interactions between
nodes and their processes. E.g., the FlexRay startup
defines three different kinds of general behavior for a
node. These roles express themselves in different state
traversal in the SDL processes. The simplest of these
requires the transition through at least five different
SDL states within the protocol operation control pro-
cess. In addition to these SDL states, internal variables
also contribute to the complexity as do the state transi-
tions of the other SDL processes.

The FlexRay Protocol Conformance Test (CT) is a
directed test suite specified and implemented for the
FlexRay Consortium to ensure a basic level of function-
ality and interoperability of FlexRay devices [5]. It is
further described below.

The NXP e Verification Environment (NVE) for the
FlexRay protocol is built around the specman/e toolkit
by Cadence which allows coverage-driven constrained
random testing [7]. It consists of a fully functional
model of the FlexRay protocol engine (PE), a digital
channel model, as well as abstract models of host and
controller host interface (CHI) to send commands and
data to the PE. Its concepts are described below.

The implementation under test (IUT) is an RTL (Ver-
ilog) representation of a full FlexRay protocol engine
whose conformance to the PS is to be ensured. The
RTL model was verified with the NXP VE and the re-
sulting hardware was tested with the FlexRay CT.

2 The test approaches

2.1 The NXP e Verification Environment
for FlexRay

The NXP e Verification Environment (NVE) for
FlexRay is a functional, transaction-based, coverage-
driven verification test bench using constrained random

configuration and stimuli. It was created to verify the
FlexRay protocol specification and then used to cre-
ate and verify the FlexRay golden reference SystemC
[6] model (also called Executable Model). Finally, it
has verified the implementation of the FlexRay proto-
col engine for the NXP micro controller SJA2510. In
the following we will describe its structure, its stimuli-
generation, checkers, and verification plan.

2.1.1 Structure

Setting up constrained random tests can be easy if the
IUT has a simple enough behavior (or is tested on a
high enough level) so that simple, abstract models of the
IUT can be used to determine its correct reaction to the
random stimuli (see, e.g., [9, chap. 2.4]). FlexRay, as
already described, consists of several interacting state
machines and maintains an internal state reaching back
up to four communication cycles in normal operation.
This state influences if – and if not with what error –
transmitted bits will be received. Due to several in-
fluencing factors, especially in multi-node topologies,
calculating this state with anything else but a complete
protocol model would most probably be more com-
plex than such a model. Thus, the main component
of the NVE is a complete, sample-accurate model of
the FlexRay Protocol Engine (an eVC in Cadence’s ter-
minology). Driving this model with the same inputs
as the IUT provides reference outputs to compare the
IUT’s output against. Additionally the model can gen-
erate protocol-conform stimuli on the bus and allows
the ”observation” of internal states of a black box IUT
by inferring them from the internal states of the model.

Thus, to verify an IUT the protocol engine imple-
mentation of the NVE is put alongside the IUT as
shown in Figure 1. Both models have the same up-
per and lower interfaces. One connects the model to a
FlexRay bus component the other connects it to a con-
troller host interface component. The communication
bus and the host are represented by simplified models.

Figure 1: An overview of the NXP e VE, showing the
PE-CHI interface in more detail

Each stimulus arriving from the bus or the controller
host interface is forwarded to both the IUT and the pro-



tocol engine model. The outputs of the IUT and the
model are collected in a dedicated checker unit and
compared to one another at appropriate points in time.
Since the behavior of FlexRay is characterized by the
behavior visible to the outside, this checker is suffi-
cient to determine the correct reaction of the IUT un-
der a given stimuli. In the other direction, bus and the
controller host interface are always driven by the IUT’s
outputs not by the model.

2.1.2 Stimulus generation

Three kinds of stimuli are needed to test the FlexRay
IUT: Both interfaces (host- and bus-interface) can pro-
vide stimuli but also the configuration space of FlexRay
can be seen as a stimulus.

The FlexRay protocol defines more than 70 config-
uration parameters. The relationship of these parame-
ters is defined by 43 constraints, mainly inequality con-
ditions. A unit within the NVE randomly generates a
valid FlexRay configuration obeying these constraints.

Since the FlexRay protocol behavior is defined by
several distributed algorithms interacting on multiple
nodes of a FlexRay cluster, it is rather difficult to repli-
cate typical or faulty FlexRay network traffic with just
a single “stimulus generation” component. Therefore,
the verification environment uses multiple instantia-
tions of the protocol engine model attached to the bus
model as stimuli generator for bus interface of the IUT.
These protocol engines can be configured to behave in
a faulty way and function then as fault injectors. A
variety of faulty behaviors is implemented in the ver-
ification environment, ranging from a stuck bit in one
of the internal counters, such as the macrotick or the
slot counter, to very specific errors causing the proto-
col engine to transmit multiple frames within a slot. In
addition, a simple noise injector is placed within the
channel that can inject periodic or stochastic noise in-
dependent of any fault injector in the system. In this
way the verification environment simulates a FlexRay
cluster, to which one or multiple IUTs can be attached.

Stimuli generation on the host side is simpler in com-
parison since the host transmits few commands and
data to its protocol engine. Several simple specman se-
quences replicate the behavior, not the functionality, of
a real controller host interface. One sequence is respon-
sible for generating the command flow to the protocol
engine causing it to enter the various operation modes
like READY, STARTUP or WAKEUP. This sequence
can operate in various modes from typical behavior to
completely random commands at hopefully inconve-
nient points in time. Further a random traffic generator
supplies the protocol engine with data to transmit and
includes the ability to cause slot collisions on the bus.

Since stimuli generation is done by using multiple
protocol engine models (see above), the component
modeling the bus can be kept relatively simple. It in-

troduces various effects that are expected from a elec-
trical physical layer while not trying to model electri-
cal behavior itself. First, it adds propagation delay to
transmitted signals depending on the transmitter and
the receiver, thereby defining the topology. Second, it
shortens the transmission start signal also depending on
a configuration matrix simulating certain effects active
stars have on signals. Finally, it can shift signal edges in
both stochastic and consistent ways and/or add glitches
to stress the FlexRay decoding units.

These stimuli are fed into the IUT until one of several
predefined conditions of the simulation is met. Mostly,
this is a certain number of cycles without ’interesting’
events to have passed after the WAKEUP/STARTUP
phase has been concluded. The topologies and config-
urations are randomized in a way that most simulations
are kept short, but that still a sufficient number of sim-
ulations of several seconds of real time or of complex
cluster configurations occur.

2.1.3 Checkers

Checking for correct behavior in the used approach in
principle consists of comparing all output signals of
both models for equivalence. However, analyzing a
low-level “error in bit edge at 131623456ps” for pos-
sible causes is difficult for a human. Thus, all sig-
nals transmitted to the bus are decoded again by a copy
of the decoder, which is already contained in the PE
model, and compared in their decoded state. Thereby
the checking is performed on transaction level, where it
is appropriate.

Also it is not reasonable to expect the RTL imple-
mentation to perform all calculations and result deliv-
ery within a single clock tick as the NVE is capable
of doing1. Therefore, certain checkers allow a specified
delay for the output from the IUT compared to the NVE
model which always responses within the minimal al-
lowed delay. In addition to this delay of calculation
results, also certain state transitions of the protocol en-
gine can only take place as result of calculations. Since
it is important for the behavior of the protocol engine
whether certain other signals arrive before or after this
state transition (e.g. the reception of a collision avoid-
ance symbol in the coldstart collision resolution state in
contrast to receiving it in the succeeding coldstart con-
sistency check state), the verification environment has
to delay its own state transitions according to the IUT
using debug lines.

2.1.4 Verification Plan and coverage metrics

The basic specification for a verification is the verifica-
tion plan. This plan lists the functional features and the
interfaces of the FlexRay protocol engine, which have

1For most cases the FlexRay Protocol Specification actually al-
lows a certain interval for it.



to be tested by the verification environment. The pro-
tocol engine model of the NVE is annotated with many
coverage items, which are linked to one or several of
these functional features of the verification plan. These
coverage items are triggered upon certain events, e.g.
events corresponding to a given SDL state transition,
but also record internal variables of the clock synchro-
nization like the number of received synchronization
frames or the current rate correction term. The checkers
also generate coverage values concerning which out-
put the IUT has generated as well as its input stim-
uli. The last major coverage group is concerned with
the FlexRay configuration setup. The verification plan
accumulates all these single items and allows high-
level statements like that e.g. the clock synchronization
works but that the startup state machines have not yet
been completely verified.

2.1.5 Verification work flow

The initial problem is to create a correct reference
model to compare the behavior of an IUT against.
To this extent two different implementations of the
FlexRay protocol engine were created [2] as shown in
Figure 2. One implementation, the SystemC model
mentioned in section 2.1, followed closely the internal
organization of the SDL diagrams, mapping each SDL
state to a clearly defined portion of the source code.
As far as possible variable names and source code con-
tained in the SDL were reused for this. This made the
adoption of changes of the protocol specification into
the model very simple. It also allowed easy identifica-
tion of errors in the SDL, when such errors were found
in the SystemC model.

Figure 2: The complete process from specification to
product

Since even in doing such a simple transfer, errors can
be introduced that are not originally contained in the
source material, a second implementation was created
as part of the NXP e Verification Environment. This
second implementation did not closely follow the SDL
diagrams but instead implemented the desired function-
ality, making the best use of the special capabilities of
the ’e’ language such as sequences and aspect-oriented
programming.

Development and cross verification of the NVE took
longer than expected (see section 3.3). To counter this
and as a quick feedback mechanism the IUT design

team employed some directed tests as a primary veri-
fication mean (not shown in Figure 2). Most IUT ver-
sions were verified with these directed tests first before
being subjected to the NVE. Finally, the FlexRay con-
troller was tested with the FlexRay conformance test for
specification conformity.

2.2 The FlexRay Conformance Test
The FlexRay Protocol Conformance Test (CT) is tasked
with ensuring compliance of any FlexRay controller
with the Protocol Specification. The intention is that
compliance will minimize the risk of communication
failures of a controller as well as interoperability prob-
lems between devices of different vendors. The CT
contains in its current 2.1 version 276 directed test-
cases. Many are to be executed with 3 sets of param-
eters and some with additional internal variations. It
was specified and implemented by FlexRay Protocol
CT work group in collaboration with subcontractors.

The test-cases of the CT are designed to completely
test a device with respect to the FlexRay Protocol Spec-
ification based on ”tag coverage”. Tag coverage means
that each of the tags attached to transitions in the SDL
diagrams needs to be reached at least by one test-
case. Thus, tag coverage is basically branch coverage
of the specification (not of the device under test). In
addition, completeness was checked using the SOVS
approach[8], which verifies if every important combi-
nation of input and output parameters is tested.

The CT can test either hardware devices or a soft-
ware (SystemC) representation of the FlexRay proto-
col, the so called Executable Model. Testing of the Ex-
ecutable Model was used as a quality gate for the CT to
reduce the likelihood of test-cases failing for compliant
devices.

2.3 Interdependencies of the CT and the
NVE

NVE and CT development was largely independent al-
though some interrelationships exists. One of the au-
thors reviewed an early version of the CT specification
(V0.1) and pointed out several coverage holes, some of
which were taken into account. Also the final editing
of the CT specification was taken over by the FlexRay
CT work group of which one author is a member. How-
ever, the goal during that stage was to ensure a correct
CT (i.e. no falsely rejected devices) not the increase of
coverage.

In the other direction the coverage of the NVE was
analyzed against the test-cases of a pre-final version
version of the Protocol Conformance Test (V0.9.5). It
turned out that the contexts of several test-cases were
insufficiently covered by the NVE. The reason for this
is that the CT test-cases are designed to satisfy a struc-
tural coverage metric (see section 2.2) whereas the



NVE coverage up to that point was functional. We iden-
tified nine clear coverage holes and further analyzed the
five most critical of them. For this we designed an error
for each of the holes which would be triggered only in
the context of the (assumed missing) coverage. These
errors were implemented one by one into the SystemC
model and the thus intendedly erroneous model was
then verified using the NVE. Two of the five errors were
detected by the NVE several times within 2000 runs,
the other three not. Although this proves that random
testing will find errors in areas overlooked by the test
designers, structural coverage measures were added af-
terward to the NVE as well as constraints and error in-
jections to fulfill them.

3 Comparison of approaches
To evaluate the two test methodologies against each
other we compare those errors uniquely found by only
one of the environments, i.e. not detectable by the other
test environment in its current state. Other analyses
often compare achieved coverage values [10] or total
number of errors found [1]. The former is in our opin-
ion not the real goal of a verification environment and
the latter is problematic in our case as the different ap-
proaches were partially applied sequentially to the same
IUT (see section 2.1.5). For our analysis we only con-
sider the errors found in the RTL implementation, as
e.g. problems found in the FlexRay Protocol Specifica-
tion (PS) were a side-effect and are difficult to compare
since directed tests detect such problems mostly during
specification and not during execution. The comparison
is based on data from two bug databases: One contain-
ing the errors found by the NXP VE and the other con-
taining the errors detected by the primary directed tests
mixed with the errors detected by the CT2. We will start
with the results of the NXP VE.

3.1 Errors only detected by the NVE
Using the coverage-based approach in excess of 126 er-
rors3 were detected. 73 of these 126 are errors with
respect to the PS and could therefore in principle be
found by the CT also. The rest divides itself mostly be-
tween documentation errors, synchronization problems
between RTL and VE, and deviations of the RTL from
an additional, stricter protocol specification agreed as
design goal internally.

Of these 73 potentially detectable errors the error
symptoms as well as the error causes were analyzed
to determine which test-cases of the CT would detect
them. For 23 errors we found such test-cases although
one test-case would only detect the relevant error if all

2Alas the CT-detected errors were insufficiently marked and as
such can not be determined separately anymore.

3About 5 errors reports got lost in the beginning while switching
from research to production-level reporting tools.

All errors found by NVE 126
Potentially detectable by CT 73
Actually detectable by CT 22 (+1)
Errors not detectable by CT 51 (-1)

Table 1: Errors found by coverage-based random test-
ing

time deviation allowed by the test-case was used up by
other, legal means. That is sufficiently improbable to
not count that error as CT-detectable. Thus, the remain-
ing 51 errors can not be detected by the directed test
approach (see Table 1).

3.1.1 Criticality of undetectable errors

Having 51 undetectable errors poses two interesting
questions: Why does the directed test approach not de-
tect these errors? And: Are these errors relevant or do
they just represent nearly improbable situations? To de-
termine the relevance of the CT-undetectable errors we
rated them similar to a Failure Mode Effect Analysis
(FMEA): according to probability of occurrence and
expected consequences. Probability of occurrence is
rated 1 to 4 from very rare (“triggered only by some
well-timed commands or bus events”) to basically al-
ways (“occurs at least once in basically every run of a
system”). The consequences are rated from 1 to 6; we
distinguish between informational effect, i.e. only sec-
ondary data like sync frame identifier lists, is disturbed,
which result in a rating between 1 and 3 depending on
how probable someone will want to use that informa-
tion while it is damaged, and functional effects, which
are rated from 4 to 6 depending on length and severity
of the loss of function and on whether other nodes may
be influenced. Criticality is then the product of both
ratings.

We classify errors as important starting from a criti-
cality of 9 (common occurrence with effect on normally
used informational data) and as somewhat important
with a criticality of 5 to 8 (5=very rare occurrence with
long-term, local, functional effect). Errors below a crit-
icality of 5 are deemed unimportant. Overall there are
six important undetectable errors, the most interesting
of them shown in Table 2, 22 errors of medium impor-
tance and 23 rather unimportant errors.

3.1.2 Reasons for non-detection

To get an indication why the directed test approach can
not find these errors, we analyzed what was lacking
from it to find them. We especially searched for test
cases which would ’nearly’ find an error but failed to
do the last bit necessary. In advance we expected re-
sults like "lack of parameter coverage", "lack of topol-
ogy coverage", "lack of negative coverage" and "lack of
state coverage" based on the perceived shortcomings of



Name Context Symptom Reason for non-detection
Frame distortion Bit edges in a frame are shifted

within allowed ranges.
Frame is not decoded. CT design decision

Rate correction in
INIT-SCHEDULE

Cluster has nodes during the
startup sequence with differ-
ently running clocks.

Node calculates wrong rate
correction value; worst case:
node drops out of startup.

Tested only in NORMAL_ACTIVE
(i.e. lacking coverage).

Boundary crossing PE tries to transmit over a slot
boundary and is stopped by an
internal check mechanism.

Transmission is stopped only
4 bits after boundary possibly
disturbing others.

Tested only with byte granularity
not with bit or sample granularity
(i.e. incomplete checkers).

Offset correction
overflow

PE needs to shift its cycle by
more than 213 clock ticks.

Offset is applied negatively,
node drops out of synchroniza-
tion.

No configuration tested which al-
lows large offset corrections (i.e.
lacking Parameter space coverage).

Table 2: Excerpt of important errors detected by the NVE but not detectable by CT

the CT specification . Surprisingly, the first two cate-
gories (aggregated into ”Configuration complexity” in
Table 3) had basically no effect.

The reasons for errors to be overlooked by the CT can
be clustered into five classes (see Table 3). The “Tech-
nical restrictions” class comprises cases which are dif-
ficult to check in a general test due deviations allowed
by the PS (see [5, chap. 1.8]), but which the NVE
finds by synchronizing its white-box model with the
specific RTL model using debug lines. Since an error
of medium importance is contained in this class, a so-
lution for a generic test would be useful.

Reason for Number Percent
non-detection of cases
Technical limitations 4 8%
Configuration complexity 1 2%
Design decision 17 33%
Lack of Coverage 27 53%
Lack of Checkers 2 4%

Table 3: Causes for errors to be not detectable

“Configuration complexity” comprises the fact that
the configuration and setup space of FlexRay is sub-
stantial and therefore lack of coverage for some combi-
nations is to be expected. It is surprising that this class
is empty except for one – albeit important – example.
Either the CT approach of testing each parameter high,
medium and low mainly within a simple topology is
working or it is improbable that errors are caused only
by certain topologies or configurations. The later is sup-
ported by our observation that improvements in error-
injection result in more new errors found than enabling
additional complicated node topologies.

“Design decision” contains the cases in which an er-
ror is not found due to a decision made during the spec-
ification of the CT. During specification phase it was
stated by the specifying companies that they would not
design test-cases checking for the absence of behavior,
especially not if triggered by not “normal” actions (e.g.
a command sent to the PE while it is in an incompat-
ible mode). Also seemingly there was at least an un-
conscious decision to not test situations where states

are entered for a second time. Both decisions are un-
derstandable since otherwise the number of test-cases
would have grown significantly. However, this category
is also the reason for 17 of the 51 non-detectable errors.

“Lack of coverage” and “lack of checkers” enclose
the errors remaining undetectable due to an oversight
during the test specification and not due to one of the
above reasons. The major contributor here is the fact
that most things are tested only once or in very few
contexts. E.g., correct initialization is often not tested
and many test-cases ignore any state before NOR-
MAL_ACTIVE, the protocol's main state. The “lack
of checkers” class contains the errors where the error
triggering context is reached by the CT but there is no
check which would notice the error.

Overall even when counting the first three classes as
excused, 29 non-detectable errors remain, five of them
important.

3.2 Errors only detected by directed tests
For comparison we also analyzed the errors found by
directed tests (either the CT or the primary directed
tests) whether they could be found by the NVE. Since
we received mostly versions of the IUT successfully
passing the primary directed tests, the NVE did not get
the chance to discover a large set of errors. For this rea-
son, we analyzed the last 152 entries in the main defect
database. Filtering out doubles, change requests, errors
originally detected by the NVE, and errors not related
to the protocol specification, 73 errors remain which in
principle can be found by the NVE.

This analysis is not as straightforward as the previ-
ous one since random tests contain a stochastic compo-
nent so it is sometimes difficult to decide whether an
error context is reached. Therefore, we classify the er-
rors found by directed tests into five categories. Four
categories based on decreasingly reliable coverage in-
dications within the NVE for the error context and one
category based on the existence of sufficient checkers
for the error effect:
Full coverage: Coverage values exist from the NVE

which indicate that exactly the context triggering



the error is reached. Also the checker detecting
the error effect exist and are working.

Weak coverage: Coverage values exist which indicate
that a sufficiently small range of contexts contain-
ing the triggering context is hit sufficiently often.
This is often caused by two necessary precondi-
tions each of which has its own coverage metric
but missing cross-coverage. Checkers are work-
ing.

Implied coverage: For at least a part of the context no
coverage metric exists but the design of the ver-
ification environment implies that the context is
reached (e.g. the noise injector always randomly
runs, so there will be tests where noise in a spe-
cific slot is tested given enough runs). Checkers
are working.

No coverage: There is no reliable indication on which
amount of coverage exists for the triggering con-
text of an error. This doesn't necessarily mean that
an error will remain undetected forever but that it
is impossible to predict a number of runs necessary
to find it with high probability.

No or dysfunctional checker: The checker, which is
supposed to detect the deviating behavior of the
IUT, is either non-existent or incapable of detect-
ing the deviation. This category also does not
guarantee that an error remains undetected since
follow-up errors overlooked in analysis could be
detected by other checkers, but it is very probable.

Thus, the last two categories are the "’error proba-
bly not found"’ categories whereas errors in the other
three categories are probably found. The number of
errors classified into each category can be seen in Ta-
ble 4. Six of the seven errors in the “Dysfunctional
checker” category stem from the same two checkers
hampered by an IUT-NVE synchronization problem.
This problem requires the checkers to accept a range
as comparison result that is bigger than the erroneous

Category Number
of errors

Full coverage 30
Weak coverage 11
Implied coverage 22
No coverage 3
No/Dysfunctional checker 7
Overall 73

Table 4: NVE classification of errors found by directed
tests

deviation. Its existence is known for some time and
caused by a slightly different interpretation of an impre-
cise part of the protocol specification between NVE and
IUT team. These errors will not be found by the CT for
the same reason. Depending on whether these six errors
are counted, there are either 4 or 10 errors detected by
directed tests, which are not detectable by the NVE. All

of the undetectable errors are of low importance accord-
ing to the classification of section 3.1.1. This probably
stems from the fact that the NVE primaryly uses func-
tional coverage metrics and errors of high importance
have to significantly influence the IUT’s functionality.

Overall, in equal sized sets of errors discovered by
the respective other approach (73 errors) the directed
test environment can not detect 51 errors, 6 of which
are important, and the coverage-based random test en-
vironment can not detect 10 errors all of which are of
low importance.

3.3 Effort

As discovering errors is always also a question of al-
located resources the effort spent in building the re-
spective test environment needs to be considered. For
the CT specification and implementation (when exclud-
ing hardware and driver costs) quoted effort is around
60 man months. The actual effort is probably higher
since both specification and implementation experi-
enced time overruns. About 2/3 of the work went into
implementation, 1/3 into specification.

The effort required for the NVE is more difficult to
determine as it was built as part of a project with sev-
eral other activities. Our best guess is that around 3 man
years were used to design and build the NVE. Thus, the
higher amount of errors discoverable by the coverage-
based random test approach was not bought by spend-
ing more effort in its realization.

Next to building the test environment there is the
question of extensibility. Possible extensions for the
CT include adding more configuration parameter sets,
bit rates, or clock speeds, and including new protocol
features. Adding configuration parameters to a directed
test approach requires changing the specification and
implementation of existing test-cases, resulting in sig-
nificant effort. On the other hand, the NVE already in-
cludes this feature since it potentially tests all feasible
parameter combinations. The situation is similar for ad-
ditional bit rates or clock speeds although the NVE in
this case might require some changes to its configura-
tion constraints. Finally, for adding new functionality
the effort is probably comparable, since the CT needs to
specify and implement new test-cases whereas the NVE
needs to adapt its internal model and coverage metrics.

One effort not yet looked at is the work required to
analyze an error indicated by the test environment. No
records were kept on this and thus we can not provide
hard data but the impression is that error processing
causes about twice as much work for the NVE than for
a directed test environment for the following reasons:

1. No indication on the context of an error exists. In a
directed test environment the best case for an error
is that the error is triggered directly by the con-
text tried to reach with the test-case and its cause
is related to the feature the test-case is intended to



test. For a coverage-based random test environ-
ment using comparison of models like the NVE an
error report states that at time x both models had
an unacceptable deviation in some output y. Thus,
normally the context triggering the error and the
cause of it have to be determined by analyzing log
files of model behavior.

2. A workaround has to be added to continue verifi-
cation. When errors are not immediately fixed one
by one but only in batches, a directed test can forgo
to run the test-cases which triggered an error. For
random testing this is not possible since it is not
predictable what contexts a random stimulus will
reach. To avoid that test runs are cluttered with
known errors, either checkers have to be adapted
such that a known error is no longer indicated or
constraints need to be changed so that the trigger-
ing context is no longer reached.

In summary the effort for building and extending the
coverage-based random test environment is less or
equal to the directed test environment whereas the ef-
fort for handling errors indicated by the environment is
probably higher.

4 Conclusions

Our comparison of a coverage-based random test ap-
proach (in form of the NVE) with a directed test ap-
proach (the FlexRay CT) shows that even with a pro-
fessionally set up directed test the random test can dis-
cover significantly more and more important errors un-
detectable by the directed test environment than vice
versa. As shown in section 3.1.2 the reason for this does
not seem to be that the random test environment can ef-
fortlessly test various configurations and node topolo-
gies nor that the model comparison approach allows
to cover internal corner cases. Rather it seems to be
caused by the inability of directed tests for a sufficiently
complex protocol such as FlexRay to test all possible
triggering contexts of an error within a limited set of
test-cases.

Using a complete functional model as the core of the
constrained-random test environment further entails the
advantage that stimuli representing arbitrary complex
topologies can easily be generated and extensions tend
to be cheaper than with directed tests.

Despite this better ability to detect errors, there are at
least two shortcomings of coverage-based random tests,
which will hinder their usage as, e.g., conformance
test. First, as shown in section 3.2, mainly probabilis-
tic statements can be made on whether a given scenario
is covered by a coverage-based random test. Since the
behavior of the whole cluster of node models is influ-
enced by the behavior of the IUT this problem can not
be circumvented by specifying certain random seeds to
be used. This could lead to vendors complaining that a

constrained-random CT did not test a competitor’s de-
vice for a certain, seldom occurring error.

Second, the necessity mentioned in section 3.3 to
change checkers or constraints to prevent known errors
from flooding the error reports could cause random test
CTs to require more time and more test runs since any
run with at least one error could hide another error be-
hind it and therefore contains the possibility of more
errors detected once the first error is solved.

Thus, until these problems can be solved coverage-
based random testing will probably not replace directed
tests for conformance tests. However, its usage for
vendor-internal verification of designs in addition to a
conformance test prevents delivering products with oth-
erwise undetected important errors.

References
[1] BARTLEY, M. ; GALPIN, D. ; BLACKMORE, T.:

A comparison of three verification techniques: di-
rected testing, pseudo-random testing and prop-
erty checking. In: Proc. Intl. Design Automation
Conference (DAC), 2002, 819–823

[2] BAUMEISTER, M. ; FUHRMANN, P. ; ARM-
BRUSTER, F.: Taking concept models from stan-
dardization to silicon. In: Automotive Electronics
and Systems Special Issue FlexRay (2005), S. 25–
27

[3] BRACKLO, C.: Flexray standardization overview.
In: Automotive Electronics and Systems Special
Issue FlexRay (2004), S. 4–5

[4] FLEXRAY CONSORTIUM: Flexray Communica-
tions System, Protocol Specification V2.1 Revision
A. 2005

[5] FLEXRAY CONSORTIUM: Flexray Communica-
tions System, Data Link Layer Conformance Test
Specification V2.1. 2006

[6] IEEE: IEEE Standard SystemC Language Refer-
ence Manual. IEEE, 2006 (IEEE Std 1666)

[7] IMAN, S. ; JOSHI, S.: The e Hardware Verification
Language. Kluwer Academic Publishers, 2004

[8] LAWRENZ, W. ; FISCHER, F. ; HOFFMEISTER, K.
; SCHEURER, M.: Leveled Conformance Tests - A
Must for Interoperability in Networked Systems.
In: Proc. Intl. CAN Conf. (ICC2000), 2000, 10–
19

[9] PIZIALI, Andrew: Functional verification cover-
age measurement and analysis. Kluwer Academic
Publishers, 2004

[10] ROMERO, E. ; STRUM, M. ; CHAU, W.: Compar-
ing two testbench methods for hierarchical func-
tional verification of a bluetooth baseband adap-
tor. In: Proc. Intl. Conf. on Hardware/Software
Codesign and System Synthesis. Jersey City, 2005,
327–332


	Introduction
	Verification methods
	FlexRay and test environments

	The test approaches
	The NXP e Verification Environment for FlexRay
	Structure
	Stimulus generation
	Checkers
	Verification Plan and coverage metrics
	Verification work flow

	The FlexRay Conformance Test
	Interdependencies of the CT and the NVE

	Comparison of approaches
	Errors only detected by the NVE
	Criticality of undetectable errors
	Reasons for non-detection

	Errors only detected by directed tests
	Effort

	Conclusions

