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Kurzfassung 

Automobile Anwendungen müssen in zunehmendem Maße die Sicherheitsanforderungen der 

IEC 61508 erfüllen, ohne daß Komplexität und Kosten überhand nehmen. Hierzu stellen wir 

einen Ansatz vor, der Wissen über die internen Strukturen einer MCU ausnutzt, um zielgerich-

tet Tester und Überwacher in die MCU zu integrieren, der dadurch für verschiedene 

Anwendungen ein fail-safe Verhalten in einem einkanaligen System erreicht und dabei 

weniger Overhead verursacht als andere Ansätze. 

Abstract 

Automotive applications are increasingly influenced by the safety requirements of IEC 61508. 

Yet their complexity and costs should not increase. To support this we propose an approach 

for constructing a single-channel fail-safe microcontroller (MCU) able to support a variety of 

safety functions. Exploiting knowledge on the internal structures of the MCU allows integrating 

optimized fault supervisors which provide the required safety integrity, resulting in a fail-safe 

behavior with less overhead than other approaches.  

1 Introduction 

Upcoming innovations in the area of active safety and driver assistance systems as well as 

more mature applications in the area of passive protection systems ask for silicon solutions 

facilitating the implementation of the respective safety function in the most efficient way. At the 

same time, the progressive use of deep submicron technologies results in a new population of 

faults and failure modes, making such safety functions critical in terms of their integrity. A 

common way to tackle this challenge is to develop problem-specific architectures to implement 

the specific safety functions and to guarantee the required safety integrity level of the MCU by 

a ‘black box’ approach, where MCU components are either (partially) replicated (e.g. [1]) or 

continuously tested via its external interfaces (e.g. [2]). 

This contradicts today’s platform architecture approach: Application specific safety architec-

tures and safety integrity measures are costly and difficult to maintain during design time 



 

changes and increase product certification costs. As solution, we present a single-channel 

control architecture for MCUs that maintains the IEC61508 requirements needed for a SIL3 

fail-safe system. In the following chapter we explain the methodology used to specify and 

design the MCU safety integrity architecture. We describe the basic fault used to guarantee 

the required safety integrity level for the relevant MCU blocks supervisors in chapter 3. Chap-

ter 4 shows how the proposed MCU architecture is able to support different safety functions. 

Chapter 5 summarizes the FMEA results which show the applicability of such an MCU for 

SIL3 applications and chapter 6 compares its required resources with other approaches.  

2 From black to white box approach: the fRMethodology 

IEC 61508 [3] is a norm becoming popular in automotive. Thus achieving Safety Integrity 

Level (SIL) 3 is becoming mandatory for many automotive applications. The SIL rating is 

based mainly on the value of the safe failure fraction (SFF, ratio of the average rate of safe 

failures plus dangerous detected failures to the total average failure rate) that has to be equal 

or greater than 99%. Moreover, for integrated circuits (IC), the factor βASIC/IC (quantifying the 

probability of common cause failures) has to be equal or lower than 25%. The foundation to 

compute these two metrics is the failure mode and effects analysis (FMEA). However, the 

number of components inside an integrated circuit is so high that system-oriented FMEA 

methods are practically inapplicable. As a consequence, the IC is often considered as a ’black 

box’. This means that the analysis is driven without knowledge of specific failure modes of the 

IC often resulting in duplicated or triplicated systems to achieve dependability. To break these 

barriers, it is mandatory to analyze the integrated circuit as a ’white box‘. 

The technology applied in this paper (called fRMethodology, one piece of faultRobust technol-

ogy [4]) is a method for performing and validating the FMEA of any integrated circuit. In sum-

mary, the proposed method includes a first stage in which an automatic tool extracts informa-

tion from the integrated circuit description by partitioning it into “sensitive zones” [5]. In a sec-

ond stage, the extracted information and the optional profile are used to fill an FMEA 

database. This database is completed by entering information related both to possible applica-

tions and failure modes according to the IEC 61508 norm. At the end of this step, failure rates 

of the sensitive zones are computed and ranked according to criticality. Results collected from 

the FMEA database include specific indices required by IEC 61508 such as the SFF and 

eventually the SIL. We call the two stages just described “fRFMEA”.  

In a third stage, the FMEA database generated above – in particular the information related to 

the application provided by the system engineer – is validated using the given circuit workload 

by using a mix of fault injection and fault simulation (this mix is called fRFaultInjector). The 



results ‘measured’ from this simulation are stored in the database and compared with the 

computed FMEA results of the previous step. In case of a mismatch, indications are given in 

order to correct the previous FMEA preparation stage. 

When fRMethodology is applied to a complete System on Chip (SoC) or Micro Controller Unit 

(MCU), a hierarchical approach is used: the SoC or MCU is divided into sub-systems and the 

fRFMEA is performed at different abstraction levels. Results of fRFMEA analysis of each sub-

system are combined in a top-level fRFMEA giving the final results for the whole MCU in 

terms of Safe Failure Fraction and Diagnostic Coverage. 
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Figure 1: The fRMethodology flow and the related MCU certification steps 

As shown in Figure 1 the analysis is performed at different abstraction levels, starting from a 

high-level view down to the final circuit representation. Documents are provided from the Sili-

con Provider (left side) to the Certification Body (such as TÜV SÜD, right side) through the 

proposed methodology flow (by YOGITECH, center). This is done at different milestones: 

initial audit, concept assessment, and the final assessment leading to certification stepping 

through the different MCU development stages. Assessment results determine changes and 

adaptation of the Silicon Provider documents, such as the Safety Manual defining the Condi-

tions of Use of the MCU described in section 4.2. 



 

3 A library of optimized fault supervisors: the fRIPs 

With the information provided by fRMethodology, it is possible to design a library of optimized 

HW circuits (called fault supervisors) to guarantee the required safety integrity level of the 

MCU sub-systems used by the safety functions. These supervisors handle errors or failures 

either passively (detecting them) or actively (correcting them). The blocks are not intrusive and 

they do not require any modification of the logic circuit that they supervise. A typical infra-

structure is composed of a “main” fault supervisor for the CPU (called fRCPU) and a set of 

“remote” supervisors (Figure 2), each one for a specified region of the system, such as the 

memory (fRMEM), the bus (fRBUS) and the peripheral sub-systems (fRPERIs). All fault su-

pervisors are connected together through an on-chip “robust net” (fRNET).  
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The fRMEM supervisor is a configurable and re-usable IP for protection of memory sub-sys-

tems [6]. It is basically an ECC-based memory protection supervisor but extended with meas-

ures to fulfill the requirements of IEC 61508, e.g. a self-checking architecture. Optionally it 

provides optimizations to improve access time (“fast-track”) and protection over time (“scrub-

bing” of developed errors). Due to the ability to store the ECC codes separately from the data, 

memory overhead can be reduced by providing different protection levels for different memory 

pages. For multi bus master architectures also a “distributed MPU” can be integrated. The 

fRMEM supervisor has been certified by TÜV SÜD. 

The fRCPU IP is designed taking full benefit of the previously described ‘white-box’ approach. 

Starting from a detailed fRFMEA analysis of the target CPU sensitive zones are selected 

which provide a SFF ≥ 99% at minimum cost. fRCPU is composed of sub units which monitor 

the CPU and model its behavior on an abstract level. It uses a set of independent checkers 

Figure 2: A microcontroller including the fault robust supervisors fRIPs. 



tailored to detect deviations of the CPU behavior from this model. fRCPU also includes a Cov-

erage Monitor Unit providing run-time information on whether current usage conforms to the 

FMEA assumptions thus ensuring that all SFF results still hold. fRCPU does not come as a 

replication of the CPU, but is architecturally and functionally diverse and thus strongly reduces 

the βASIC as required by IEC 61508. Also, as fRCPU implements a hardware-centric approach, 

most diagnostic is implemented in hardware and not in software as in approaches such as [2] 

or [8] and thus CPU performance is not impacted. fRCPU has been assessed by TÜV SÜD: a 

concept report has been delivered stating that the proposed measures can be able to fulfill the 

safety integrity level SIL3. 

Bus supervisors (fRBUS) consist of decoders, arbiters, and checkers monitoring sources and 

sinks of the bus interconnect and controlling data integrity and routing. Peripheral supervisors 

(fRPERI) implement a “hardware verification component”, i.e. a block where a subset of the 

protocol’s checks and assertions are used to verify that a given interface and protocol are still 

implemented by the hardware. fRCPU, fRMEM, fRBUS and fRPERI communicate with sys-

tem-level supervisors through a dedicated interconnect (fRNET) based on an on-chip robust 

protocol that guarantees that information is transferred without errors between the different 

diagnostic units and to a system-level supervisor such as the one described in section 4.1. 

This dedicated interconnect assures that safety-related information travel in a separate and 

parallel way with respect to mission data as required by IEC 61508. 

4 The fail-safe MCU platform and its application in different system concepts 

To apply the approach described above in a general purpose, fail-safe MCU applicable to a 

variety of safety functions, one first needs to understand the possible safety mechanisms and 

application constraints involved in these safety functions. Limiting ourselves to fail-safe shut-

down applications, we distinguish two general control architectures of such applications: open 

loop control (e.g. electronic steering column lock – ESCL – and airbag systems) and closed 

loop control (e.g. vehicle dynamics control and other active assistive functions like EPS and 

ESP). We abstractly model their safety-related functionality as a distributed control system 

consisting of sensors, actuators, communication and microcontrollers (see Figure 3). Obvi-

ously, in these system architectures the microcontrollers (called ref_MCU) serve different 

application-level functions. We abstract these into three general functions: ref_MCU1 – remote 

sensor processing (RSS), ref_MCU2 – open-loop control processing (ACS), and ref_MCU3 – 

closed-loop control processing (ACS). A detailed hazard analysis together with the safe state 

definition for each of the considered system classes leads to safety integrity measures neces-

sary to achieve a safe distributed control system. A possible realization for the closed loop 



 

architecture is presented in Figure 4 where gray parts indicate additional or enhanced compo-

nents or communication with respect to the unprotected architecture of Figure 3. 

As can be seen the ref_MCU can serve as control unit of a fail safe subsystem employing 

redundancy (e.g. in the RSS) although it itself is only classified as 1oo1(D). This is possible 

due to the presented single-channel fail-safe microcontroller being capable to integrate the 

independent shutdown control decision logic and to realize an independent safing or shut-

down control path. This has been achieved by strictly applying fRIPs as presented in section 3 

combined with a suitable and small set of additional HW- and SW-based safety integrity func-

tions as described below. 

Figure 3: Simplified Distributed Control Systems – Open/Closed-Loop Control Systems 
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Figure 4: Closed Loop Distributed Control Systems including safety integrity measures 

4.1 HW and SW -realized safety integrity functions 

The MCU must be able to execute the various safety functions implied by the three different 

usages scenarios of the MCU shown above according to the specific application needs. In a 

one channel MCU this requires special measures since a pure MCU by itself is not able to 
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implement and guarantee the safety integrity required for SIL3, i.e. to detect faults occurring in 

the microcontroller with the proper DC/SFF and to react to control the failures stemming from 

these faults as required for an integrated shutdown control path.  

For this reason the safety MCU platform makes use of the following HW safety integrity meas-

ures which result in the concept for a safety integrity microarchitecture that has been suc-

cessfully reviewed and approved by TÜV-SÜD (s. section 5): 

• For the processing sub-system 
o faultRobust IPs (fRIPs) is used as presented in section 3;  

• For peripheral interfaces being part of the safety-related system, e.g. ADC and GPIO 
o redundant HW is provided to enable their use in SIL3 applications.  

• For the power, reset and clocking architectures 
o measures such as proper power organization, a safe clocking strategy and a 

proper reset architecture are applied. These strategies detect wide common-
cause effects, e.g. power spikes and reset and clock faults. 

• For the interactions with the communication sub-system and the external world: 
o a distributed MPU protects memory sub-systems against HW/SW faults caused 

by the association of the processing sub-system with further bus masters 
o a HW “signal qualification” function is supported, to generate, transfer, receive 

and evaluate the diagnostic information from one side to the other of the dis-
tributed control system (e.g. from ref_MCU1 to ref_MCU2). 

Furthermore a system supervisor unit (SSU) is integrated to fulfill the requirement for failure 

control, i.e. the provision of an independent shutdown control path in case a major fault dis-

ables the processing sub-system and all its executed safety functions. 

Our approach supports as well the usage of software safety integrity functions:  

First, standard methods like comparing two sensor values with each other or providing end-to-

end protection over the communication link using CRCs and packet counters can continue to 

be used without a change. This allows for an easy migration of existing safety concepts. 

Second, as the processing subsystem is now basically self-checking no higher-layer test 

methods using e.g. challenge-response strategies (such as used in the e-gas architecture [2]) 

are necessary to detect faults in the working environment of the software safety functions. 

This reduces the necessary software overhead as well as the processing one. 

Third, it is possible to propagate error indications created by the fRIPs to the software safety 

functions to inform them in more detail about the error cause. Using this information the soft-

ware can try to either resolve the problem, e.g. by resetting specific subcomponents, or work 

around it, e.g. by using other, possibly less exact means to reach a comparable result. Thus 

our usage of the white-box approach allows software to work around occurring errors and thus 

to possibly increase the availability of the system. 



 

4.2 Conditions of use 

The fail-safe MCU is only part of the safety-relevant system. Therefore conditions exist how 

the MCU must be employed within the system and what behavior is expected from the sys-

tem. This is generally called “Conditions of use” and is included in the Safety Manual. There 

are conditions implied by IEC 61508 for any such system; for example, that the correct func-

tioning of the shutdown path must be tested. MCU-‘specific’ conditions influence how the ap-

plications running on the MCU have to be set up and react and how the surrounding system 

must react. Examples of the former are that applications shall enter a safe state within the 

system safety time when required safety-relevant data does not arrive, that applications em-

ploying an ADC must periodically check that the ADC reference voltage is measured correctly, 

and that the embedded SPI interfaces shall be used only for one-to-one connections unless 

higher-layer safety measures are provided. Examples for system conditions are predefined 

reactions of the system if the pins of the MCU go into high impedance mode, integration of an 

external capacitor into the circuitry reducing over-voltage spikes, and the expectation of a 

power-on reset at least every 24 hours. 

5 Safety analysis results 

The MCU concept has been assessed by TÜV SÜD with the following main results: The MCU 

is able to support open and closed loop automotive applications such as described in section 

4. The immediate failure detection of the fRIPs used in the processing sub-system and the I/O 

redundancy of some of the I/Os reduces error detection latency and thus puts fewer con-

straints to the process safety time than other single-channel approaches.  

Regarding common cause failures, the βASIC/IC is below the required threshold of 25% due to 

the intrinsic diversity of fRIPs with respect to the sub-system they supervise. Contrary to dual 

core architectures, no additional measures as required by IEC 61508 2nd edition (part 2 an-

nex E) for ICs have to be considered. Therefore this MCU does not require implementing 

guard-rings, temperature sensors and so forth. Furthermore, no external watchdog is neces-

sary to supervise the MCU since it performs intrinsic clock supervision. Concerning parts of 

the MCU in which redundancy is used (such for ADC, GPIO and similar ones), conditions of 

use are defined in order to guarantee the avoidance of common cause failures such as dis-

tance between blocks/lines. 

The concept analysis of the MCU has shown that the proposed application of fault control and 

fault avoidance measures can be suitable to fulfill the desired risk level SIL 3 in accordance 

with IEC 61508. The set of necessary conditions of use is small and easy to handle during 

system integration. 



6 Comparison with different architectures 

We compare our approach with two main competitors: the dual-CPU lock-step architecture 

and the asymmetric CPU checking architecture. 

The dual-CPU lock-step architecture (e.g. [7]) is unable to reach SIL3 without additional 

measures. This is caused by the potential for common cause failures affecting both CPUs 

which cannot be detected by the compare unit. Therefore, the dual-CPU lock-step architecture 

has a βASIC greater than 50%. HW measures required to lower the βASIC are listed in IEC 

61508. They include the use of an external watchdog, diverse synthesis for the CPU checker, 

specific layouting requirements (e.g. using guard-rings ≥ 100µm and a potential ring), and 

temperature sensors. IEC 61508 also requires a minimum diagnostic coverage of each CPU 

of at least 60%. Therefore proper SW routines are needed such as CPU start-up and periodic 

diagnostic tests, CPU compare unit management and failure diagnostic and control.   

Our proposed architecture on the other hand requires no additional measures to fulfill IEC 

61508 thanks to the intrinsic diversity of the fRIPs and due to the detailed analysis done with 

fRFMEA as described in section 2 and 3. 

The above measures increase the lock-step architecture’s overhead over the one caused by 

replication alone. This can be seen in Table 1 which summarizes the costs of the approaches 

based on a reference design of a ARM968ES dual-CPU lock step architecture. The values 

represent the delta cost for the safety integrity measures, i.e. the cost of the architecture with 

safety integrity measures minus the cost of the architecture without them. Moreover, costs are 

normalized to the costs of the pure dual-CPU lock-step reference as shown in the grey col-

umn. These values were determined by extracting information from the reference design (e.g. 

gate counts after synthesis, memory area, power computation) and by estimating SW over-

heads based on commonly used diagnostic routines.  It can be seen that when focusing on 

the CPUs the fR approach has around one sixth of the delta costs of a SIL 3 compliant dual-

CPU lock-step architecture. This is mainly caused by fR not using a simple replication of func-

tionality but instead employing white box verification of the correct functioning of the CPU. 

SIL3 

 Dual CPU Lock Step 
βasic/IC>25% 

Dual CPU Lock Step 
βasic/IC≤25% 

faultRobust 
(fRCPU) 

Area overhead 1 1.97 0.31 
SW overhead 1 2.22 0.45 
Power overhead 1 1.94 0.31 
Detection latency 1 3 <1 
Performance overhead 1 2.22 0.08 

Table 1: Comparison of approaches without memories 

Including large memories in the analysis dilutes the advantage of the fR approach as memory 

protection includes a constant overhead e.g. for ECC storage. An obvious question is how 



 

significant this diluting effect is. For a typical medium-high end automotive MCU with 512Kb 

flash, 48Kb SRAM, 32Kb shared TCM (Tightly Coupled Memories) and 0.25Mgates of extra 

logic, the saving of fRCPU/fRMEM relative to dual-CPU lock-step is still around 25%. Savings 

grow if TCM memories are not shared between the lock-step CPUs. This benchmark also 

does not yet include the optimized supervision of the buses and peripherals for failures. With a 

simple simulation, for the typical medium-high end automotive MCU described before and 

considering 70% of the extra logic to be protected with HW safety integrity measures, the 

saving of fRCPU/fRMEM plus fRBUS/fRPERI with respect to dual-CPU lock-step plus 

bus/peripheral redundancy rapidly grows to 35%. 

The asymmetric CPU checking architecture (as used in [2] and [8]) is composed of two 

diverse CPU cores (or a CPU core and a DSP, or a CPU core and an external smaller CPU). 

Typically asymmetric checking is implemented through a ‘challenge-response’ mechanism 

(C&R), i.e. the second CPU core send “challenges” to the main CPU and checks if the re-

sponses are in line with expected values. In other implementations, the second CPU core 

interrupts the execution of the main CPU core to execute some kinds of diagnostic tests.  

Main drawbacks of such an architecture compared to the fR approach are the following: 

� The C&R mechanism by definition cannot achieve full coverage of transient faults, 

unless they are present during the period of time in which the C&R operation or the di-

agnostic tests are running. So SIL3 is very difficult to be achieved.  

� The HW overhead is significantly greater than the one to be paid for fR approach. In 

most of the cases the second CPU has to be powerful enough to generate sophisti-

cated “challenges” (otherwise coverage will decrease) and it has to be provided with a 

dedicated memory sub-system, bringing high integration costs. 

� The diagnostic coverage is clearly proportional to the SW overhead caused by the 

C&R. Moreover, this architecture is often supported by some additional SW diversity 

(such as variable mirroring) to cover remaining unprotected sub-systems. For complex 

applications, this SW overhead can lead to an unacceptable increase of flash memory. 

� Safe Failure Fraction and diagnostic coverage are directly proportional to how often 

and for how long C&R or diagnostic tests are performed. The same holds for diagnos-

tic capability. This significant performance overhead can make this architecture un-

suitable for small microcontrollers with no additional performance headroom. 

7 Conclusions 

We have shown how the combination of a ‘white-box’ risk analysis process, of fault supervisor 

components for CPU, memory, and bus, of specific hardware measures for critical support 



components, and of some conditions of use result in a fail-safe one-channel SIL3 capable 

MCU able to support a variety of safety functions. As demonstrated by the performed cost 

benchmark this solution compares favorably with other approaches with regards to HW and 

SW overhead. Since the protected processing system of such a fail-safe microcontroller al-

lows an application independent analysis of the diagnostic coverage capabilities and of the 

safe failure fraction according to IEC 61508, the safety concept developer gains additional 

degrees of freedom for the E/E control architecture realization. Furthermore, the overall vali-

dation and certification of the safety case is drastically simplified. Moreover, the provided en-

hanced diagnostic capability will allow system makers and SW application designers to in-

crease availability and to exploit new ideas such as dynamic reconfiguration of HW resources 

in case of failures. 

8 References 

[1] M. Baleani, et al. "Fault-Tolerant Platforms for Automotive Safety-Critical Applications”. In 

International Conference on Compilers, Architecture and Synthesis for Embedded Systems 

(CASES'03). San Jose, October 2003 

[2] Arbeitskreis EGAS: Standardisiertes E-Gas-Überwachungskonzept für Motorsteuerungen 

von Otto- und Dieselmotoren. Report Version 2.0. Verband der Automobilindustrie, May 

2005. 

[3] CEI International Standard IEC 61508, 1998-2000. 

[4] faultRobust technology, www.fr.yogitech.com 

[5] R. Mariani, G. Boschi, and F. Colucci, “Using an innovative SoC-level FMEA methodology 

to design in compliance with IEC61508”, Proceedings of DATE 2007, April 2007, Nice, 

France 

[6] R. Mariani, F. Colucci, and P. Fuhrmann, Safety integrity of memory sub-systems in aut-

omotive microcontrollers, SAE 2007 World Congress, 2007-01-1494 

[7] T. Fruehling, “Delphi Secured Microcontroller Architecture”, SAE Technical Paper, 2000-

01-1052 

[8] S. Brewerton, R. Schneider, and D. Eberhard, „Implementation of a Basic Single-Micro-

controller Monitoring Concept for Safety Critical Systems on a Dual Core Microcontroller“, 

SAE 2007 World Congress, 2007-01-1486 


